On the Convergence of the Gaussian Mixture Filter
نویسنده
چکیده
This paper presents convergence results for the Box Gaussian Mixture Filter (BGMF). BGMF is a Gaussian Mixture Filter (GMF) that is based on a bank of Extended Kalman Filters. The critical part of GMF is the approximation of probability density function (pdf) as pdf of Gaussian mixture such that its components have small enough covariance matrices. Because GMF approximates prior and posterior as Gaussian mixture it is enough if we have a method to approximate arbitrary Gaussian (mixture) as a Gaussian mixture such that the components have small enough covariance matrices. In this paper, we present the Box Gaussian Mixture Approximation (BGMA) that partitions the state space into specific boxes and matches weights, means and covariances of the original Gaussian in each box to a GM approximation. If the original distribution is Gaussian mixture, BGMA does this approximation separately for each component of the Gaussian mixture. We show that BGMA converges weakly to the original Gaussian (mixture). When we apply BGMA in a Gaussian mixture filtering framework we get BGMF. We show that GMF, and also BGMF, converges weakly to the correct/exact posterior distribution.
منابع مشابه
Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملRemoving Mixture of Gaussian and Impulse Noise by Patch-Based Weighted Means
We first establish a law of large numbers and a convergence theorem in distribution to show the rate of convergence of the non-local means filter for removing Gaussian noise. We then introduce the notion of degree of similarity to measure the role of similarity for the non-local means filter. Based on the convergence theorems, we propose a patch-based weighted means filter for removing impulse ...
متن کاملComplete convergence of moving-average processes under negative dependence sub-Gaussian assumptions
The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
متن کاملConvergence Results for the Gaussian Mixture Implementation of the Extended-Target PHD Filter and Its Extended Kalman Filtering Approximation
The convergence of the Gaussian mixture extended-target probability hypothesis density GMEPHD filter and its extended Kalman EK filtering approximation in mildly nonlinear condition, namely, the EK-GM-EPHD filter, is studied here. This paper proves that both the GM-EPHD filter and the EK-GM-EPHD filter converge uniformly to the true EPHD filter. The significance of this paper is in theory to pr...
متن کاملPerformance Comparison of Gaussian and Elliptic High Pass Filter
In this paper, Gaussian and elliptic high pass filters are analyzed for image sharpening qualitatively and quantatively . The filters are implemented in frequency domain using matlab software. Experiments are performed to compare the performance of both the filters ,processed images are presented. The results demonstrate that elliptic yields better results.
متن کامل